The GABA(A) receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome.
نویسندگان
چکیده
Hyperactivity, hypersensitivity to auditory stimuli, and exaggerated fear are common behavioral abnormalities observed in individuals with fragile X syndrome (FXS), a neurodevelopmental disorder that is the most common genetic cause of autism. Evidence from studies of the Fmr1 knockout (KO) mouse model of FXS supports the notion that impaired GABAergic transmission in different brain regions such as the amygdala, striatum or cerebral cortex is central to FXS behavioral abnormalities. This suggests that the GABAergic system might be an intriguing target to ameliorate some of the phenotypes in FXS. Our recent work revealed that THIP (gaboxadol), a GABA(A) receptor agonist, can restore principal neuron excitability deficits in the Fmr1 KO amygdala, suggesting that THIP may also restore some of the key behavioral abnormalities in Fmr1 KO mice. Here, we reveal that THIP significantly attenuated hyperactivity in Fmr1 KO mice, and reduced prepulse inhibition in a volume-dependent manner. In contrast, THIP did not reverse the deficits in cued fear or startle response. Thus, this study shows that enhancing GABAergic transmission can correct specific behavioral phenotypes of the Fmr1 KO mouse further supporting that targeting the GABAergic system, and specifically tonic inhibition, might be important for correcting or ameliorating some key behaviors in FXS.
منابع مشابه
GABA-B Agonist Baclofen Normalizes Auditory-Evoked Neural Oscillations and Behavioral Deficits in the Fmr1 Knockout Mouse Model of Fragile X Syndrome
Fragile X syndrome is a genetic condition resulting from FMR1 gene mutation that leads to intellectual disability, autism-like symptoms, and sensory hypersensitivity. Arbaclofen, a GABA-B agonist, has shown efficacy in some individuals with FXS but has become unavailable after unsuccessful clinical trials, prompting interest in publicly available, racemic baclofen. The present study investigate...
متن کاملDownregulation of tonic GABAergic inhibition in a mouse model of fragile X syndrome.
The absence of fragile X mental retardation protein results in the fragile X syndrome (FXS), a common form of mental retardation associated with attention deficit, autistic behavior, and epileptic seizures. The phenotype of FXS is reproduced in fragile X mental retardation 1 (fmr1) knockout (KO) mice that have region-specific altered expression of some gamma-aminobutyric acid (GABA(A)) receptor...
متن کاملModulation of the GABAergic pathway for the treatment of fragile X syndrome
Fragile X syndrome (FXS) is the most common genetic cause of intellectual disability and the most common single-gene cause of autism. It is caused by mutations on the fragile X mental retardation gene (FMR1) and lack of fragile X mental retardation protein, which in turn, leads to decreased inhibition of translation of many synaptic proteins. The metabotropic glutamate receptor (mGluR) hypothes...
متن کاملPharmacologic Treatment with GABAB Receptor Agonist of Methamphetamine-Induced Cognitive Impairment in Mice
Methamphetamine (METH) is a highly addictive drug, and addiction to METH has increased to epidemic proportions worldwide. Chronic use of METH causes psychiatric symptoms, such as hallucinations and delusions, and long-term cognitive deficits, which are indistinguishable from paranoid schizophrenia. The GABA receptor system is known to play a significant role in modulating the dopaminergic neuro...
متن کاملFragile X syndrome and targeted treatment trials.
Work in recent years has revealed an abundance of possible new treatment targets for fragile X syndrome (FXS). The use of animal models, including the fragile X knockout mouse which manifests a phenotype very similar to FXS in humans, has resulted in great strides in this direction of research. The lack of Fragile X Mental Retardation Protein (FMRP) in FXS causes dysregulation and usually overe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental neuroscience
دوره 33 5 شماره
صفحات -
تاریخ انتشار 2011